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The authors obtained the criteria of hydrodynamic and thermal similarity of flows that characterize
the thermodynamic properties of liquids and real gases. A mathematical model of processes in liquids
and real gases is developed in dimensionless form.

The known criteria of hydrodynamic and thermal similarity of gas flows are found by analysis of the
equations of the dynamics of flow of a viscous ideal gas with constant heat capacity that are written in di-
mensionless form [1, 2]. For the similarity of flows of real gases and liquids to be ensured, in addition to the
geometric and kinematic similarity and the equality of the known criteria, the conditions of similarity of the
molecular structure and states of substances whose motions are compared (conditions of thermodynamic simi-
larity) must hold [3, 4]. With thermodynamic similarity the compared flows will be similar if liquids at iden-
tical points and at identical instants of time are in the corresponding (i.e., thermodynamically equivalent)
states.

1. In engineering, if becomes necessary to use, in modeling of flows, real gases and liquids which are
not thermodynamically similar to full-scale ones. For determination of the similarity criteria of real gases and
liquids which characterize their thermodynamic properties, it is necessary to supplement the system of differ-
ential dynamic equations by the thermal equation of state [5]

dρ = (∂ρ ⁄ ∂T)p dT + (∂ρ ⁄ ∂p)T dp (1)

and the caloric equation of state [5]

dh = (∂h ⁄ ∂T)p dT + (∂h ⁄ ∂p)T dp . (2)

We replace the dimensional partial derivatives in Eqs. (1) and (2) by the following dimensionless
derivatives [5]: the relative isobaric coefficient of volumetric expansion αT = α ⁄ α0 = (T ⁄ v)(∂v ⁄ ∂T)p, the
Gru

..
neisen criterion Γ = αa2 ⁄ cp = (cp

 ⁄ cv − 1)/(αT) = (ρ ⁄ T)(∂T ⁄ ∂ρ)s, and the adiabatic index k = ρa2 ⁄ p =
mcp

 ⁄ cv = Ks
 ⁄ p = (ρ ⁄ p)(∂p ⁄ ∂ρ)s. We obtain

dρ ⁄ ρ = − αTdT ⁄ T + (αTΓ ⁄ k) dp ⁄ p ,   dh ⁄ (cpT) = dT ⁄ T + [(1 − αT) Γ ⁄ (kαT)] dp ⁄ p . (3)

In an ideal gas with constant heat capacity, the adiabatic index is equal to the ratio of the heat capacities k
= γ = cp

 ⁄ cv = const, Γ = γ − 1. In liquids and dense gases (when ρ ⁄ ρcr.p > 1.6), where the adiabatic elasticity
moduli change weakly, at s = const and T = const, the index k is inversely proportional to pressure and
cannot be taken to be constant.
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In the general case, the relative change in the velocity of sound can be represented in the form

da ⁄ a = 0.5 (dKs
 ⁄ Ks − dρ ⁄ ρ) = 0.5 


[(κ + ψ) ⁄ k] dp ⁄ p − (ψ + 1) dρ ⁄ ρ




 . (4)

Here

κ = k + p (∂k ⁄ ∂p)s = (∂Ks
 ⁄ ∂p)s ;   ψ = (v ⁄ Ks) (∂Ks

 ⁄ ∂v)p = [1 ⁄ (αKs)] (∂Ks
 ⁄ ∂T)p . (5)

If (∂Ks
 ⁄ ∂p)s = const, then κ = (k2p2 − k1p1)/(p2 − p1).
In contrast to the adiabatic index, the parameter Bs = p(k − κ)/κ and the dimensionless combinations

κ and ψ in liquids and dense gases change weakly or remain constant with substantial changes in the pressure
and temperature. In calculation and modeling of flows of liquids and dense gases, the parameters Bs, κ, and
ψ can often be assumed to be constant and equal to their mean values in the considered processes.

When expressions (3)−(5) are used, the equations of inversion of the effects [6, 7] for changes in the
velocity, density, pressure, temperature, and Mach number M = w ⁄ a in a one-dimensional flow of a liquid
take the form

(M2 − 1) dw ⁄ w = dF ⁄ F − dLeng
 ⁄ a2 − (Γ + 1) dLfr

 ⁄ a
2 − ΓdQ ⁄ a

2 ,

(M2 − 1) dρ ⁄ ρ = − M2 dF ⁄ F + dLeng
 ⁄ a

2 + (Γ + 1) dLfr
 ⁄ a

2 + ΓdQ ⁄ a
2 ,

(M2 − 1) dp ⁄ p = k [− M2 dF ⁄ F + dLeng
 ⁄ a

2 + (ΓM2 + 1) dLfr
 ⁄ a

2 + ΓM2dQ ⁄ a
2] ,

(M2 − 1) dT ⁄ T = Γ 



− M2 dF ⁄ F + dLeng

 ⁄ a
2 + [ΓM2 + 1 + (M2 − 1) ⁄ (αT)] dLfr

 ⁄ a
2 +

+ [ΓM2 + (M2 − 1) ⁄ (αT)] dQ ⁄ a
2

  ,

(M2 − 1) dM2 ⁄ M
2 = (M2 − 1) dw2 ⁄ w

2 − (M2 − 1) da2 ⁄ a
2 = [2 + (κ − 1) M2] dF ⁄ F −

− (κ + 1) dLeng
 ⁄ a

2 − 


 κ + 1 + Γ [2 + (κ − 1) M2 + (ψ + 1) (M2 − 1)]  dLfr

 ⁄ a
2 −

− Γ [2 + (κ − 1) M2 + (ψ + 1) (M2 − 1)] dQ ⁄ a
2 .

(6)

The known formula [6] for changes in the Mach number in a one-dimensional flow of an ideal gas

(M2 − 1) dM2 ⁄ M
2 = [2 + (γ − 1) M2] dF ⁄ F − (γ + 1) dLeng

 ⁄ a
2 − γ [2 + (γ − 1) M2] dLfr

 ⁄ a
2 −

− (γ −1) (1 + γM2) dQ ⁄ a2 (7)

is a particular case of Eq. (6) for κ = k = γ, Γ = γ − 1, αT = 1, and ψ = 0.
In an isentropic process of a liquid or a dense gas for Bs = const, κ = const, and Γ = const, from (6)

we obtain [8, 9] the equations of isentropy and the thermodynamic functions of the number M and the re-
duced velocity λ = w ⁄ acr = M{(κ + 1)/[2 + (κ − 1)M2]}

1⁄2:

k = (p + Bs) κ ⁄ p ,   a2 = kp ⁄ ρ = (p + Bs) κ ⁄ ρ ;   ρ2
 ⁄ ρ1 = v1

 ⁄ v2 = [(p2 + Bs) ⁄ (p1 + Bs)]
1 ⁄ κ ;

T2
 ⁄ T1 = (ρ2

 ⁄ ρ1)
Γ = [(p2 + Bs) ⁄ (p1 + Bs)]

Γ ⁄ κ ;   kpvκ = (p + Bs) κvκ = const ;
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ρ∗  ⁄ ρ = [1 + (κ − 1) M2 ⁄ 2]1 ⁄ (κ−1) ;   a∗  ⁄ a = [1 + (κ − 1) M2 ⁄ 2]1 ⁄ 2 ;

(p∗  + Bs) ⁄ (p + Bs) = k∗ p∗  ⁄ kp = [1 + (κ − 1) M2 ⁄ 2]κ
 ⁄ (κ−1) ;

T∗  ⁄ T = [1 + (κ − 1) M2 ⁄ 2]Γ
 ⁄ (κ − 1) ;   ρ ⁄ ρ∗  = [1 − (κ − 1) λ2 ⁄ (κ + 1)]1 ⁄ (κ−1) ;

a ⁄ a
∗  = [1 − (κ − 1) λ2 ⁄ (κ + 1)]1 ⁄ 2 ;   (p + Bs) ⁄ (p

∗  + Bs) = [1 − (κ − 1) λ2 ⁄ (κ + 1)]κ
 ⁄ (κ−1) ;

T ⁄ T
∗  = [1 − (κ − 1) λ2 ⁄ (κ + 1)]Γ

 ⁄ (κ−1) .

(8)

Isentropic specific works of compression and expansion of a liquid and a dense gas are determined from the
formulas

Lc.s = 

κ (p1 + Bs) ⁄ [(κ − 1) ρ1]



 



[(p2 + Bs) ⁄ (p1 + Bs)]

(κ−1) ⁄ κ − 1



 ;

Lexp.s = 

κ (p1 + Bs) ⁄ [(κ − 1) ρ1]


 



1 − [(p2 + Bs) ⁄ (p1 + Bs)]

(κ−1) ⁄ κ


 .

(9)

Particular cases of formulas (8) and (9) for Bs = 0, κ = k = γ, and Γ = k − 1 are the adiabatic Poisson
equations, the known gasdynamic functions, and the equations of isentropic works.

From (8) it follows that the hydrodynamic function of the Mach number M and the reduced velocity
λ of the isentropic flow of a liquid and a dense gas depend, in contrast to the gasdynamic functions of the
flow of an ideal gas, on the values of the parameters κ and Γ and on the value of the ratio k∗  ⁄ κ =
Bs

 ⁄ p∗  + 1 rather than on the ratio of the heat capacities γ. If Bs = 0, κ = k, but Γ is not equal to the differ-
ence k − 1, we obtain the equation of isentropy and the hydrodynamic functions of the isentropic flow of a
real gas, in the considered process of which the criteria k and Γ may be assumed to be constant.

2. Following [10], we consider the conditions of flow of a liquid or a real gas past a full-scale object
and its model. The equations of motion and energy determining model flows are written in the parameters of
the full-scale flow. All quantities entering these equations are expressed in terms of the fractions of the cor-
responding quantities for an undisturbed flow at a distance from the body (w∞, p∞, ρ∞). The characteristic
values of time and dimensions of the body are denoted as t0 and l. The excess temperature is expressed in
the fractions of the difference of the temperatures of an incoming flow and the body wall: ∆T ⁄ ∆T0 =
(T − Tw)/(T∞ − Tw). The dimensionless quantities are denoted by an overbar: t

_
 = t ⁄ t0, x

_
 = x ⁄ l, w

__
 = w ⁄ w∞, p

_
 =

p ⁄ p∞, ρ
__

 = ρ ⁄ ρ∞, ν
__

 = ν ⁄ ν∞, λ
__

 = λ ⁄ λ∞, and T
__

 = T ⁄ ∆T0. We represent the relative change in the velocity in
the form dw ⁄ w = dM ⁄ M + da ⁄ a, where da ⁄ a is determined from formula (4).

We obtain the following equalities:

[lw
__

 ⁄ (w∞t0)] 



(1 ⁄ M) (∂M ⁄ ∂t

_
 ) + [(κ + ψ) ⁄ (2kp

_
)] (∂p

_
 ⁄ ∂t

_
 ) − [(1 + ψ) ⁄ (2ρ

__
 )] (∂ρ

__
 ⁄ ∂t

_
 )



 +

+ w
__

 2 

(1 ⁄ M) (∂M ⁄ ∂x

_
 ) + [(κ + ψ) ⁄ (2kp

_
 )] (∂p

_
 ⁄ ∂x

_
 )  − [(1 + ψ) ⁄ (2ρ

__
 )] (∂ρ

__
 ⁄ ∂x

_
 ) = gl ⁄ w∞

2  −

− [p∞
 ⁄ (ρ∞w∞

2 )] (1 ⁄ ρ
__

 ) (∂p
_

 ⁄ ∂x
_
 ) + (4ν

__
 ⁄ 3) [ν∞

 ⁄ (w∞l)] (∂2w
__

 ⁄ ∂x
_

 2) + (4ν
__

 ⁄ 3) [ν∞
 ⁄ (w∞l)] (∂ν

__
 ⁄ ∂x

_
 ) (∂w

__
 ⁄ ∂x

_
 ) ; (10)

[l ⁄ (w∞t0)] [w∞
2  ⁄ (cp∞ ∆T0)] (w

__
∂w
__

 ⁄ ∂t
_
 ) + [l ⁄ (w∞t0)] [αT ⁄ (αT)∞] [k Γ∞p

_
 ⁄ (k∞Γρ

__
)] (∂T

__
 ⁄ ∂t

_
) +

+ [w∞
2  ⁄ (cp∞ ∆T0)] (w

__
2∂w

__
 ⁄ ∂x

_
 ) + w

__
 [αT ⁄ (αT)∞] [k Γ∞p

_
 T
__
∞

 ⁄ (k∞Γρ
__

 T
__
)] (∂T

__
 ⁄ ∂x

_
) =

766



= [l ⁄ (w∞t0)] [p∞
 ⁄ (ρ∞w∞

2 )] [w∞
2  ⁄ (cp∞ ∆T0)] (αT ⁄ ρ

__
 ) (∂p

_
 ⁄ ∂t

_
 ) +

+ [p∞
 ⁄ (ρ∞w∞

2 )] [w∞
2  ⁄ (cp∞ ∆T0)] (αT ⁄ ρ

__
 ) w

__
 (∂p

_
 ⁄ ∂x

_
 ) +

+ (4ν
__

 ⁄ 3) [ν∞
 ⁄ (w∞l)] [w∞

2  ⁄ (cp∞ ∆T0)] (∂w
__

 ⁄ ∂x
_
 )2 + [λ∞

 ⁄ (ρ∞cp∞w∞l)] (λ
__

 ⁄ ρ
__

 ) (∂2T
__

 ⁄ ∂x
_

 2) +

+ [λ∞
 ⁄ (ρ∞cp∞ ν∞)] [ν∞

 ⁄ (w∞l)] λ
__

 (∂λ
__

 ⁄ ∂x
_
 ) (∂T

__
 ⁄ ∂x

_
 ) . (11)

It follows from the comparison of the equations of motion (10) for full-scale and model flows that
for the hydrodynamic similarity of the flows to be ensured on condition of geometric and kinematic similar-
ity, in addition to the equality of the known criteria Sh = l ⁄ (w∞t0), Eu = p∞

 ⁄ (ρ∞w∞
2 ) = 1/(k∞M∞

2 ), Re =
w∞l ⁄ ν∞, Fr = w∞

2 /(gl), M∞ = w∞
 ⁄ a∞, and k∞ = ρ∞a∞

2  ⁄ p∞, the Mach numbers M, indices k, and dimensionless
parameters κ, ψ, and ν

__
 must be the same at identical points of the flows at identical instants of time.

If in the considered flows the quantities κ and ψ are assumed to be constant (equal to their mean
values), they become the determining criteria characterizing the thermodynamic properties of liquids and
dense gases. For κ = const, M∞m = M∞f.−sc, and k∞m = k∞f.−sc, the indices k at identical points of similar
flows of a real gas or liquid at identical instants of time will be the same. The criterion κ characterizes the
fundamental properties of the medium: if κ < −1, then for M > 1 shock waves are impossible in the liquid,
but rarefaction shock waves exist [9].

It follows from the comparison of the equations of energy (11) for full-scale and model flows that for
the thermal similarity of the flows to be ensured on condition of geometric, kinematic, and hydrodynamic
similarity, in addition to the equality of the known criteria Pe = w∞lρ∞cp∞

 ⁄ λ∞, Pr = ρ∞cp∞ν∞
 ⁄ λ∞, and Θ =

w∞
2  ⁄ (cp∞∆T0), the dimensionless combinations Γ∞ and (αT)∞ and the variables Γ, αT, and λ

__
 must be the same

at identical points of the flows at identical instants of time. If, in the considered flows, the quantities Γ and
αT can be assumed to be constant (equal to their mean values), they become the determining criteria charac-
terizing the thermodynamic properties of liquids. The values of the relative variables λ

__
 and ν

__
 or µ

__
 = µ ⁄ µ∞ =

νρ ⁄ (ν∞ρ∞) in the model and full-scale flows will be the same if for p ⁄ p∞ = const

λ ⁄ λ∞ = (T ⁄ T∞)
τλ ;   ν ⁄ ν∞ = (T ⁄ T∞)

τν ;   µ ⁄ µ∞ = (T ⁄ T∞)
τµ (12)

and for T ⁄ T∞ = const

λ ⁄ λ∞ = (p ⁄ p∞)
πλ ;   ν ⁄ ν∞ = (p ⁄ p∞)

πν ;   µ ⁄ µ∞ = (p ⁄ p∞)
πµ , (13)

and the indices τλ, τν, τµ, πλ, πν, and πµ are the same at identical points of the flows at identical instants of
time. For example, τµ = 0.76 for air [10]; usually τλ = τν for gases. For diesel fuels, πν = bp ⁄  ln (p ⁄ p0),
where b = 14⋅10−3−15.6⋅10−6ν0. If, in the considered processes, these indices remain constant, then they will
be the determining similarity criteria which characterize the variability of the coefficients of thermal conduc-
tivity and viscosity.

The criteria Γ and αT are the power expressions composed of constant parameters of different physi-
cal nature which are specified by the condition. The number of all these complex criteria can be found using
the π-theorem of the dimensional theory [11]. The criteria κ, ψ, τλ, τν, τµ, πλ, πν, and πµ belong to neither
parametric nor complex criteria. Some of them (κ, ψ) have derivatives. Others are the exponents of paramet-
ric variables. The criteria of the third group can be obtained only from an analysis of equations describing
the considered processes. Their number cannot be determined by the π-theorem of the dimensional theory.

3. In polytropic processes of compression of a real gas or a liquid with constant values of polytropic
efficiency (ηc.pol = vdp ⁄ dh) in a compressor (pump) and expansion in a turbine (ηexp.pol = dh/(vdp), the values
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of the polytropic indices of compression nc and expansion nexp depend on the values of the adiabatic index k
and the Gru

..
neisen criterion Γ [12]:

nc = kηc.pol
 ⁄ [ηc.pol − Γ (1 − ηc.pol)] ;   nexp = k ⁄ [1 + Γ (1 − ηexp.pol)] . (14)

The polytropic index is the determining similarity criterion of polytropic processes. If we assume k,
Γ, αT, ηc.pol, and ηexp.pol to be constant, then for n = const we have

ρ2
 ⁄ ρ1 = v1

 ⁄ v2 = (p2
 ⁄ p1)

1 ⁄ n ;   T2
 ⁄ T1 = (p2

 ⁄ p1)
[n(1+ΓαT)−k] ⁄ (knαT) = (p2

 ⁄ p1)
Γ(ηexp.pol−1+αT) ⁄ (kαT) =

= (ρ2
 ⁄ ρ1)

Γ(ηexp.pol−1+αT) ⁄ 

αT[1+Γ(1−ηexp.pol)]



  ;   a2

 ⁄ a1 = (p2
 ⁄ p1)

(n−1) ⁄ (2n) . (15)

In adiabatic throttling, the polytropic efficiency ηexp.pol is zero. We obtain

n = k ⁄ (Γ + 1) ; ρ2
 ⁄ ρ1 = v1

 ⁄ v2 = (p2
 ⁄ p1)

(Γ+1) ⁄ k ; T2
 ⁄ T1 = (p2

 ⁄ p1)
Γ(αT−1) ⁄ (kαT) ; a2

 ⁄ a1 = (p2
 ⁄ p1)

(k − Γ−1) ⁄ (2k) . (16)

In these processes, p2 < p1. If αT > 1, then T2 < T1; if αT = 1, then T2 = 1; if αT < 1, then T2 > T1.
In liquids and dense gases with change in the pressure and for constant ηc.pol and ηexp.pol the

polytropic index changes as sharply as the adiabatic index does, although the polytropic elasticity modulus
Kpol = np [2] remains constant or changes weakly. Similarly to κ in the isentropic process, in the polytropic
process the index Π = n + p(∂n ⁄ ∂p)η = (∂Kpol

 ⁄ ∂p)η and the parameter Bgyr = p(n − Π)/Π remain constant or
change weakly. If the values of Γ, αT, ψ, ηc.pol,  and ηexp.pol are assumed to be constant, for Π =
(n2p2 − n1p1)/(p2 − p1) = const and Bgyr = const we obtain

Π = [κ − Γψ (1 − ηexp.pol)] ⁄ [1 + Γ (1 − ηexp.pol)] = [κηc.pol + Γψ (1 − ηc.pol)] ⁄ [ηc.pol − Γ (1 − ηc.pol)] ;

ρ2
 ⁄ ρ1 = v1

 ⁄ v2 = [(p2 + Bgyr) ⁄ (p1 + Bgyr)]
1 ⁄ Π ;   a2

 ⁄ a1 = [(p2 + Bgyr) ⁄ (p1 + Bgyr)]
(Π−1) ⁄ (2Π)−[Γψ(1−ηexp.pol)]

 ⁄ (2κ) ;

T2
 ⁄ T1 = [(p2 + Bgyr) ⁄ (p1 + Bgyr)]

[Γ(ηexp.pol+αT−1)] ⁄ 

αT[κ−Γψ(1−ηexp.pol)]



 =

= (ρ2
 ⁄ ρ1))]

[Γ(ηexp.pol+αT−1)] ⁄ 

αT[1+Γ(1−ηexp.pol)]



  ;

Lc.pol = 

Π (p1 + Bgyr) ⁄ [(Π − 1) ρ1]


 



[(p2 + Bgyr) ⁄ (p1 + Bgyr)]

(Π−1) ⁄ Π − 1



 ;

Lexp.pol = 

Π (p1 + Bgyr) ⁄ [(Π − 1) ρ1]



 



1 − [(p2 + Bgyr) ⁄ (p1 + Bgyr)]

(Π−1) ⁄ Π


 .

(17)

In adiabatic throttling, Π = (κ − Γψ)/(Γ + 1);

ρ2
 ⁄ ρ1 = [(p2 + Bgyr) ⁄ (p1 + Bgyr)]

1 ⁄ Π ;   a2
 ⁄ a1 = [(p2 + Bgyr) ⁄ (p1 + Bgyr)]

(Π−1) ⁄ (2Π)−Γψ ⁄ (2κ) ;

T2
 ⁄ T1 = [(p2 + Bgyr) ⁄ (p1 + Bgyr)]

Γ(αT−1) ⁄ [αT(κ−Γψ)] = (ρ2
 ⁄ ρ1)

[Γ(αT−1)] ⁄ [αT(1+Γ)] .
(18)

In the processes of change of states of liquids and dense gases, the index Π and the combination Bgyr
 ⁄ pst =

(n ⁄ Π − 1)p/pst are the determining similarity criteria (here pst = 101,325 Pa). They also belong to the third
group of criteria. The ratio Bgyr

 ⁄ pst is a measure of variability of the values of k and Γ in the considered
process.
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Thermodynamic processes in liquids and dense gases can only approximately be calculated by the
equations of polytropic processes. Formulas (8), (9), (17), and (18) describe these barotropic processes more
accurately. They can be called gyrotropic [9]. They involve, as a particular case, all polytropic processes (for
Bgyr

 ⁄ pst = 0). In isentropic and isothermal processes in dense gases for T > Tcr.p the parameters Bs and BT are
negative [13]. The suggested mathematical model of a liquid and a dense gas not only describes experimental
quantities with sufficient accuracy, but also makes it possible to extrapolate by pressure to the future [14].

Example 1. To determine the pressure, density, temperature, and velocity of sound of an isentropically
retarded flow of propane with M = 0.3, T = 300 K, and p = 10 MPa. From the data of [15], for T = 300 K
and p = 10 MPa, ρ = 512.79 kg/m3, s = 4.464 kJ/(kg⋅K), a = 847.6 m/sec, h = 596.9 kJ/kg, k = 36.84, Γ =
0.725, κ = 9.22, Bs = 29.98 MPa, and w = 254.3 m/sec. According to formulas (8), we obtain p∗  = 26.92
MPa, T∗  = 308.44 K, ρ∗  = 532.75 kg/m3, h∗  = h + w2 ⁄ 2 = 629.23 kJ/kg, a∗  = 992.1 m/sec, and k∗   = 19.48.
Exact calculation according to [15] gives p∗  = 26.81 MPa, T∗  = 308.4 K, ρ∗  = 532.48 kg/m3, a∗  = 993.3
m/sec, k∗  = 19.6, and Γ∗  = 0.736. The error of calculation by formulas (8) amounts to less than 0.4%.

In isentropic retardation of a hypothetical real gas which has the same flow parameters (p = 10 MPa,
T = 300 K, ρ = 512.79 kg/m3, a = 847.6 m/sec, M = 0.3, k = 28.16, and Γ = 0.731), we obtain p∗  = 22.89
MPa, T∗  = 306.3 K, ρ∗  = 527.54 kg/m3, a∗  = 1263.5 m/sec, and w = 379 m/sec. It is seen that if we consider
the liquid as a real gas with constant indices k and Γ (equal to the mean values of the indices of the liquid),
the calculational errors increase substantially. In retardation of an ideal gas with k = 28.16 and Γ = 27.16, we
obtain T∗  = 666.6 K for the same values of the remaining parameters as in a real gas.

Example 2. To determine the density, temperature, and velocity of sound after adiabatic throttling of
propane with p1 = 21 MPa and T = 210 K, to p2 = 0.5 MPa. From the data of [15], ρ1 = 622.31 kg/m3, k1

= 59.91, (αT)1 = 0.320, Γ1 = 1.4515, κ1 = 11.37, n1 = 24.44, k2 = 1706, (αT)2 = 0.419, Γ2 = 1.2487, κ2 =
10.63, n2 = 758.7, a1 = 1422 m/sec, and h = 400.6 kJ/kg. According to formulas (18), Π = 6.53, Bgyr = 57.59
MPa, αT = 0.3695, Γ = 1.350, κ = 11.0, ρ2 = 594.3 kg/m3, T2 = 219.79 K, and a2 = 1198.1 m/sec. Exact
calculation according to [15] gives ρ2 = 594.22 kg/m3, T2 = 220 K, and a2 = 1198 m/sec.

Conclusions. Criteria characterizing the thermodynamic properties of liquids and real gases are ob-
tained. A mathematical model for calculating the processes and flows of liquids and real gases by means of
the hydrodynamic functions of isentropic flows, a particular case of which is the known gasdynamic func-
tions, is developed. It is shown that the processes in liquids and real gases cannot be described by the
polytropic equations with sufficient accuracy, but they obey the equations of a wider class of barotropic proc-
esses, which can be called gyrotropic. The gyrotropic indices and some of the other obtained similarity crite-
ria belong to neither complex nor parametric criteria. Their number cannot be determined using the π-theorem
of the dimensional theory.

NOTATION

δ, specific volume; ρ, pressure; p = 1/v, density; s, entropy; T, temperature; K, elasticity modulus; h,
enthalpy; k, adiabatic index; m, index of isotherm; cp and cv, isobaric and isochoric specific heat capacity,
respectively; a, velocity of sound; Γ, Gru

..
neisen criterion; α = (1/v)(∂v ⁄ ∂T)p, isobaric coefficient of volumetric

expansion; M, Mach number; w, velocity of flow; γ, ratio of the heat capacities; F, cross-sectional area of the
flow; L, specific work; Leng, engineering work done by unit mass of the liquid; Lfr, specific work of friction
forces; Q, amount of heat taken by 1 kg of liquid from external sources; ν, kinematic viscosity; µ, dynamic
viscosity; λ, thermal conductivity; g, free-fall acceleration; l, characteristic dimension of the body; t0, charac-
teristic time; x, distance along the abscissa; n, polytropic index; η, efficiency; Sh, Strouhal number; Eu, Euler
number; Re, Reynolds number; Fr, Froude criterion; Pe, Pe′clet criterion; Pr, Prandtl number; Θ, temperature
factor; αT, relative isobaric coefficient of volumetric expansion; κ, isentropic index; ψ, relative isobaric coef-
ficient of change in the adiabatic elasticity modulus; B, parameter which has the dimensions of pressure; pst,
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standard atmospheric pressure at sea level. Superscript: *, isentropically retarded parameter. Subscripts: ∞, in
an undisturbed flow; w, on the body wall; c, compression; exp, expansion; pol, polytropic; cr, critical; s, at
constant entropy; cr.p, at the thermodynamic critical point "liquid−vapor"; c.pol, in the process of compres-
sion, polytropic; exp.pol, in the process of expansion, polytropic; 0, for p → 0; m, in a model flow; f.-sc, in
a full-scale flow; gyr, in a gyrotropic process; T, at constant temperature.
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